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Abstract

PLATINUM is an operating system kernel with a novel memory management system for Non-Un frm

Afemory Access (NUMA) multiprocessor architectures. ;his memory management system imp--
ments a cohereni memory abstraction. Coherent memory is uniformly accessible from all processors
in the system. When used by applications coded with appropriate programming styles it appears
to be nearly as fast as local physical memory and it reduces memory contention. Coherent mem:,rv
makes programming NUMA multiprocessors easier for the user while attaining a level of performance
comparable with hand-tuned programs.

This paper describes the design of the PLATINUM memory management system with emphasis
on the implementation of coherent memory and the factors that affect its performance. We measure
the cost of basic operations implementing coherent memory. We also measure the performance of a
set of application programs running on PLATINUM. Finally, we comment on the interaction between
architecture and the coherent memory system.

PLATINUM currently runs on the BBN Butterfly Plus (TM) Multiprocessor.

This work is supported in part by U'. S. Army Engineering Topographic Laboratories research contract no. DACA
76-85-C-0001, in part by ONR research contract no. N00014-84-K-0655, and in part by NSF research grant n-,. CCi-
8704492.
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p. - "implementaticn can good parallel" becomes "implementation can attain good parallel".

pl - "extending of a" becomes "extending a".

p2 - "including including" becomes "including".

p8 - "the the" becomes "the".

pS - "If one is found, the bus error must be a coherent memory fault. Otherwise. becomes
"If one is found, and it is determined not to be a protection violation fault. then it is a coherent
memory fault".

p9 - "contains the index of an entry" becomes "contains a pointer to an entry".

p17 - "intalled" becomes "installed".

p19 - "The Natasha programming language . becomes "We will use the Natasha programming
language".

p19 - "with] Mach" becomes "with Mach"



1 The Need for Transparent Management of Non-Uniform
Memory.

PLATINUM is an operating system kernel designed to be a platform for research on memory mail-
agement systems for Von-Uniform Memory Access (NUMA) multiprocessor architectures, those in
which the distributed, shareable memory of the machine can be referenced by any processor on the
machine, but the cost of accessing a particular physical location varies with the distance between
the processor and the memory module. The name "PLATINUM" is an acronym for "Platfcr. for
Investigating Non-Uniform Memory". It supports the experimental evaluation of a family of soft-
ware implementations of a coht rent memory abstraction on top of non-uniform physical memory
architectures.

One can achieve impressive speedup due to parallelism on a NUMA multiprocessor, but unfor-
tunately this can entail a considerable effort. Because remote memory references are an order of
magnitude more expensive than local references and because remote references are subject to st-v-ral
forms of potential contention, the physical location of data is critical to performance. On the BBN
Butterfly (TM) Parallel Processor, a popular and productive way to deal with the problem of data
location is to avoid the question by using libraries [24] and languages [30] that support message pass-
ing. When using distributed NUMA memory directly, however, one has to deal with data locality.
This programming of data locality is reminiscent of the explicit management of memory hierarchies
using overlays: attaining performance can be non-intuitive and can depend upon dynamic propert -s
of program execution: worse, it has to be done explicitly by every application programmer. Thus.
a programmer can easily expend far more effort "programming the memory architecture" to attain
low latency and low contention than solving his or her problem.

Our goal is to explore the possibility of achieving performance comparable to that of hand-
tuned programs with a simple. easy-to-program shared-memory model. PLATINUM is an exercise in
doing this transparently in an operating system kernel on top of an existing NUMA multiprocessor.
PLATINUM assumes neither special architectural support nor extensive language-specific assistan e
from a compiler. although we believe them to be important in the long run. It is crucial to presein
users with a simple model of shared memory whose implementation can good parallel performalc,'.
It is our thesis that the key to attaining this goal is to provide an efficiently implemented. uniform.
and coherent model of memory to the user.

PLATINUM's implementation of coherent memory replicates and migrates data to the processor-
using that data. thus creating the appearance that memory is uniformly and rapidly accessible.
The protocol for controlling this data movement is derived by extending of a directory-based cach
coherency algorithm using selective invalidation [10: 1; 4]. The extension accomodates the NUMA
architecture by including an option of not replicating or migrating data to local memory on an access
miss, rather using the underlying remote access mechanism. This in effect dynamically disables
caching on a block-by-block basis. This is crucial because when write-shared data is modified at
fine temporal and spatial granularities the overhead of executing a coherency protocol can be more
expensive than not having caching at all. This effect can be especially bad with the large block
sizes and overheads associated with software-assisted caching. This is a critical distinction between
NUMA memory management in PLATINUM and the software caching of Li's Distributed Virtual
Memory [26] or the software controlled caching of the VMP Multiprocessor [12; 11].

Measured performance on real applications is a far better indicator of the success of a system
than predictions based on either simplified analytic models or trace driven simulation extrapolated
on a few seconds of the execution of a very different system. For that reason, rather than produce a
paper design of the coherent memory, we decided to produce a small experimental kernel, PLATINUM.
on which we 'rnld run a wider variety of experiments, varying both the policies and mechanisms
of the memory management system as well as testing it against a wide variety of programs and
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Figure 1: Gaussian Elimination Speedup

programming styles. Version 1 of PLATINUM runs on BBN Butterfly Plus (TM) Parallel Processors.

We are actively building a library of applications designed to test the performance of PLATINUM
with ;t variety of programming styles that use different memory access patterns. The results are
encouraging. Figure 1 plots the speedup of a program that simulates Gaussian elimination without
pivoting on dense matrices. In this case the input is 800 by 800. This particular problem was chosen
because it was used in performance studies of programrriung systems [15; 22] on earlier versions of
the Butterfly. It simulates Gaussian elimination in the sense that it uses integer rather than floating-
point operations, thus emphasizing the relative impact of memory latency with respect to the speed
of arithmetic. Speedup on this program is limited by the serialization of block transfer operations
at the memory module containing the pivot row of the current iteration.

There are several other test applications including including a family of merge sort programs
and a simulator for recurrent neural networks that learn by backpropagation. This last program
is especially interesting because its memory referencing behavior is inherently much less regular
than that of the other programs, and because it was implemented an AI researcher rather than an
operating system designer.

The design of PLATINUM targets factors such as ease of programming and performance. since
these are the criteria by which the coherent memory abstractions should be judged. While other
issues such as security, protection, and long-term storage have been considered in the abstract design,
they have received only cursory attention in the current version.

1.1 Design Strategy

NUMA multiprocessor organization leads to memory management design choices that differ markedly
from those that are common in systems designed for uniprocessors or UMA multiprocessors. If two
or more processes on a uniprocessor are sharing read-only data such as a common code segment.
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it is wasteful to allocate multiple private copies. Such replication is expensive in terms of number
of page frames used and in terms of the expense of copying the data. For example. to reduc.e this
expeiz , , Mach [27: 321 is designed to minimize the amount of data copying and replication through
the use of copy-on-write and other techniques.

In contrast, extra data motion in the form of replication and migration can yield greatly im-
proved performance on a NUMA machine. Placing data in the local memory of a processor that
is using it decreases memory access latency. More importantly, a processor accessing local data is
not performing remote operations that contend for remote memory modules and for the processor-
memory switch. These two factors also motivate the use of caches in bus-based multiprocessors [181.
The advantages of replication and data motion distinguish the problem of managing memory on a
NUMA machine from the same problem on uniprocessors and Uniform Memory Access (UMA) mul-
tiprocessors. Thus. the PLATINUM coherent memory subsystem attempts to replicate and migrate
data to the processors using that data.

2 PLATINUM Overview

Since the goal is the exploration of transparent NUMA memory management. we chose to use
familiar abstractions and interfaces as much as possible rather than develop new ones specifically
for PLATINUM. This decision applied to both the interface presented to the user and some of th,-

internal kernel interfaces. \Ve chose Mach [5] as the prototype because of its separation of the virtual
memory system into machine-dependent and -independent parts. The interfaces to PLATINUM were
derived by stripping down the Mach model and then applying some further simplifications that
were possible because the kernel runs on a single NUMA machine. Within this simplified model.
PLATINUM coherent memory is implemented as a replacement for the machine-dependent part of
the memory management system.

Given the initial successes with PLATINUM, its interfaces are being extended as required to
provide added functionality and ease of programming to support larger experiments. We are also
adding an instrumentation interface to the kernel to help interpret its behavior. The design is
intended to make it easy to integrate PLATINUM coherent memory with Mach.

2.1 Abstractions

This section briefly describes the abstractions supported by the PLATINUM kernel. A comprehensiv,

description of the interface can be found in (16].

The model that PLATINUM exports to user programs is a multiprocessor in which all primary
memory accessible to user programs appears to be a fast (on average) shared physical memory
module that is uniformly accessible from all of the processors in the system. The actual physical
location of data in primary memory is hidden from the user. Page boundaries, however, are not
hidden. PLATINUM allocates memory in page-aligned regions. This enables the user to redure
interprocessor interference by allocating shared data with different access patterns to different pages.

The fundamental abstractions supported by PLATINUM are the thread, the memory object, the
port, and the address space. These objects all appear in a single flat global name space.

A memory object is an abstraction of an ordered list of memory pages. A range of pages within
a memory object may be bound to any contiguous page-aligned virtual address range of the same
size, subject to hardware alignment restrictions. Neither the virtual address range nor the access
rights need be the same in every address space. Since they, have global names, memory objects are
the natural unit of data- or code-sharing between address spaces.
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A thread is a kernel-schedulable thread of control. At any tim it is bound to a single process:r.
An explicit migration operation can move it to another locatiun. It is, however. constrained t-1
execute within a single address space.

An address space is a list of bindings of memory objects and access rights to virtual address
ranges. It defines the environment in which one or more threads may execute. The threads in a
single address space may be distributed to multiple processors.

A port is a protected message queue that can have any number of senders and receivers. Messages
are variable-length arrays of zero or more bytes. Globally named, ports provide a communication
medium usable by threads that do not share access to a common memory object. Because receive
operations on ports can block in the kernel, they also serve as the blocking synchronization mecha-
nism by threads that do share memory.

Logical concurrency is realized through the use of multiple threads to implement a single appli-
cation. True parallelism is realized by running those threads on multiple processors. Many different
styles of communication and synchronization can be utilized by a collection of cooperating threads
under PLATINUM. Communication between threads can be based on either either or both shared
memory or message-passing via ports. Threads that coexist within a single address space share all
of the memory" objects mapped into that address space. This implies, in addition to data coherency.
that these threads share a coherent view of the mappings of memory objects that constitute the
shared space. A more restricted form of sharing is realized by mapping a shared memory object into
multiple address spaces. The shared object can be accessed by all of the threads in those spaces.
but the non-shared objects in each address space are protected from threads in other spaces.

3 Organization of the Memory Management System

A typical virtual memory system has traditionally managed a memory hierarchy consisting of a
cache, a uniformly accessible primary memory, and a significantly slower secondary memory. The
existence of remote primary memory on a NUMA multiprocessor adds at least one more level to this
hierarchy. The PLATINUM memory management system is structured so as to separate the usual
responsibilities of virtual memory management from the additional requirements imposed by the
NUMA architecture. The memory manager is constructed in three layers. The highest layer is the
Virtual Memory system. The middle layer is the Coherent Memory system. The lowest layer is the
Physical Map system.

3.1 Virtual Memory System

The virtual memory system manages the mappings from virtual address ranges to memory objects
and memory objects to coherent pages. In the "NUMA-Logical Map" on the left side of Figure 2
there are two address spaces into which three objects are mapped. Of the three objects, two are
completely resident in primary memory and are therefore backed with coherent pages, while only a
window of the third is resident.

The machine-independent part of the Mach virtual memory system is the prototype for this layer.

3.2 Coherent Memory System

The coherent memory system is responsiLle for the mappings from coherent pages to physical pages.
These may be one-to-many. The left side of Fijri:,e 2 shows coherent-to-physical mappings for one of
the three memory objects. When a processor accesses a coherent page for which it has no physical
mapping the coherent memory system creates one to an appropriate physical page from the set
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Figure 2: Logical and Physical Page Mappings

backing the coherent page. If the set contains no appropriate physical page, as determined b% th,
replication policy, then the set will be changed by eadding a new element and perhaps deleting other,

The coherent memory system also guarantees the consistency of the physical pages backing a
coherent page.

Coheretit memory is implemented by extending a directory-based protocol that performs selecti,,
invalidation to maintain coherency 110: 2]. For each coherent page the system maintains a direc,,-7"
of all physical pages backing it. A new physical page is added to the directory when the systen
chooses to replicate the coherent page. When a processor writes to a coherent page all but a singl,
physical copy are invalidated and removed from he directory.

The protocol makes heavy use of the hardware memory management unit, a Motorola .MC6K5,:
on the Butterfly Plus, by restricting the access rights to physical pages in order to ensure t-,
generation of bus errors by memory accesses which require action. Most transitions in the protocc'
are thus initiated by page faults and are performed by the bus error handler.

The coherent memory system consists of two main modules:

" Cmap
The coherent map system is responsible for maintaining the coherency of the mappings from
virtual to physical pages for each processor. It manipulates the address translation caches
(ATC) of the memory management unit as well as the page tables. There is a separate local
page table (Pmap) for each processor using an address space. The Mach pmap interface was
used as a prototype for the Cmap interface to the virtual memory system.

" Cpage
The coherent page system is responsible for allocating, freeing, and maintaining the coherency
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of the data in the physical pages backing a coherent page. The ('page system includes tlh(
coherent page fatvlt handler and the defrost daenion. It also implements the policy that controlk
the replication of coherent pages. An interfacr is given to the virtual memorN system for the
allocation of cohcrent pages

3.3 Physical Map System

The coherent memory system depends on a simple machine-dependent page table and address trans-
lation cache management module. For each address space a physical page map (Pmap) is used to
cache the composition of thc logical mappings maintained by the of the virtual memory system and
coherent memory system. Each physical mapping illustrated on the right side of Figure 2 is the
composition of a corresponding sequence of mappings on the left side of the figure.

4 Design and Implementation

NUMA multiprocesor architectures ar interesting because they offer a promise of scaleable paral-
lelism using a shared memory model of computation. The key to achieving performance is decen-
tralizing >_,niputations. maximizing concurrency, and minimizing contention for shared resources
It is especially important that the operating system kernel u.,e this principle to avoid limiting the
scaleahilitN of the system The design and implementation of tht memory management system is
based on three guiding strateges

" Kernel operations and dat:i structures should be decentralized

" Local data structures should be used whenever possible to minimize memory access latency
and reduce memory module c rntention.

" The residual impact of contenti . i -,htwefn: concurrenT kernel operations should kept small.

These design principles led to specific implementation techniques. Wherever possible. atomic
memory operations are used to implement concurrent data structures. If an explicit lock is necessary
to implement a critical section. then its scope is minimiz(1, Remote memory accesses in critical
sections are avoided. especially within the coherent page fault handler. In some cases the algorithms
and data structures have been designed so as to perform a modest :iumber of local memory accesses
rather than a single remote memory access. Replication is used extensively. When it is not possible
to replicate data in the layers that implement coherent memory, it is scattered among the memory
modules to reduce contention. Because the upper layers of the kernel are implemented on top of
coherent memory, a large part of the replication is handled automatically.

The kernel address space consists of two regions, one in physical memory and the other in
coherent memory. Kernel code and the data structures for the lowest layers of the kernel are in
physical memory. Kernel code and read-only data are replicated, but writeable data can only have
one copy. It is mapped for remote access by all but its local processor. The physical and coherent
memory systerms as well as physical device handlers must have their data structures in physical
memory. 'The upper layers, however, have their data structures in the coherent memory region
These include the implementations of virtual memory, threads, and pcrts.

The kernel stacks, which are in the coherent memory region. require special handling. Otherwise.
after movement of a thread between processors, the first attempt to access the kernel stack would
generate a coherent memory fault, causing the processor to try to save its state on that same
kernel stack. This circular dependence is broken by migrating the kernel stack explicitly before the
corresponding thread is allowed to be activated at its new location.

The coherent and physical memory management systen.s use the following data structures:
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I h. .naI,pings from virtual address ,s to memory objects and from meory c.,Jzrt to co)t-. I
pag ,s are maintained by the virtual memory svst-.m. For each address spar, th. cnh-r1rn,
nemor system caches the composition of these mappings in a Coherent Map (Crat,,. A

Ciap contains a table of virtual-to-coherent page mappings (Crmap entries). a queue of recenlt
changes to the address space. a bit mask denoting processors with this address space ai\v-
and a Pmap for each of these processors. The message queue is used to maintain address spar-

coherency.

o Cmap entry
A Coherent map entry is analogous to a page table entry. It contains a pointer to the colhfren!
page. an access control field. and a bit vector called the rcferencE mask. If a processor ha-- a
virtual-to-physical translation for the coherent page in its Pmap. the bit corresponding to that

processor is set

* f Map rnssagc

Co,-ret ma, messages describe changes made to the virtual address space that afft,i vir-u-i
tc-physial mappings held by two or more processors. A message includes the virtual addr -

and a d:rective either t, invalidate the curient translation or to restrict tltw access rig- i; I!
Each proce.ssor is responsible for making the changes that affect it before it allows an', thr,.a,
in tiat address space to run.

* Cpag tW.b(

the Coherent pae- table is the list of all available coherent pages The numb'er of coli-, :rt
pages is determined by the amount of available physical memory. Each entry in th- ('ja
table describes the state of a Cpage. This information includes a directrory of physical paat
backing the Cpage and indicates whether there is a virtual-to-physical translatiot alloi,
write access. The directory consists of a bit mask indicating which memory modules contain a
physical page backing the Cpage and a list of these physical pages. An entry also record,
time of the most recent invalidation and whether the Cpage has been frozen by the retlicati,'il
policy.

o Interted Pagc Tab
Each memory module contains an inverted page table which describes the state of each physical
page in the module. An entry indicates whether the physical page is allocated and to which

coherent page.

5 Shared-Memory Coherency

The shared-memory coherency problem has two major facets, data coherency and address spar,
coherency. Much of the literature on coherent multiprocessor caches concerns the data coherenc\
part of the problem. On UMA multiprocessors with coherent caches the address space coherency
problem is primarily one of maintaining the consistency of address translation caches [8]. Given the_

lack of any direct haraware support for either form of coherency, PLATINUM solves both aspects
of the problem in one unified framework; data coherency is implemented using a mechanism for

maintaining address spare coherency.

5.1 Coherency Protocol

To maintain shared memory coherency we extended a directory-based cache coherency protocol using
selective invalidation [10. 2]. On a INUIMA nultiprocessor a physical page of memory need not be
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Ic a' t) t Ih node that accesses it. Thus. when a prncessor tries to access a coherent page tIat ha! ii-.

1,, al physical page backing it. the PLATINUM coherent meioiry mechanism can always choose eit her

to rmake a local copy of a page or to create a mapping to an existing remote page. In pricipc the

chic, should be made b) evaluating the tradeoff between the performance benefits of local access and

the overhead of executing the protocol. The ability to use remote rnappings is especially important

when multiple processors make frequent, interleaved, and fine-grain modifications to a shared data

structure. The resulting interprocessor interference causes the frequent execution of any protocol to

maintain coherence among multiple copies. By using remote mappings the PLATINUM protocol can.

in effect, selertively and dynamically disable replication and migration when interference is detected.

A coherent page can be in one of the following four states:

empty means that there are no physical pages backing the coherent page. Thus. there are no

virtual-to-physical mappings to this page. Only unaccessed zero-fill memory can be in this

state

prestentl means that there is exactly one physical page backing the coherent page and all virtu-.-

to-physical mappings are restricted to read access. A virtual-to-coherent mapping may permit

write access to the coherent page, but the virtual to physical mapping is restricted in order to

implenent the coherency protocol.

present+ means that there are two or more physical pages in different memory modules backing

the coherent page. All virtual-to-physical mappings for the coherent page are restricted to

-ead a,-cess. As above, a virtual-to-coherent mapping may permit write access to the coherent

!,age

modified meai ): ,t there is one phYwical page harking the coherent page and at least one virtual-
to-physical nit : ping allows write access

'h,. presentl state is distinguished trom the present+ state for performance reasons Th

transition from present+ to modified on a write miss requires the the invalidation of at least on,.

virtua.-to-physical mapping and the reclamation of at least one physical page. The transition fromi

presenti to modified requires neither.

Most transitions between states are triggered by bu errors. When a bus error occurs during an

attnpted access to a non-empty Cpag-. the Cpage system can either map an existing physical

copy for remnte access. or create and then map a local physical copy. For example, if there is a write

miss on a Cpage in the modified state, th, choice is between mapping the existing physical copy or

allocating a local physical page. copying the data. and then invalidating the original copy. Similar

decisions arise for the other case,;.

A policy module within the Cpage system chooses the appropriate action on each bus error. The

current policy is driven by the Cpage's history of recent invalidations. Cpages that have not been

recently invalidated are replicated. On the other hand, recent invalidation is used as an indication

that the Cpage is being shared by processors that are writing to it. The Cpage system uses this

information to limit the overhead of running the protocol.

5.2 Implementing Data Coherency

Data coherency is implemented by the ous error fault handler This fault handler is split across the

coherent and virtual memory la.ers. When a bus error occurs, the Cpage fault handler searches the

Cmnap for an entry that maps the faulting virtual address. If one is found, the bus error must be a

coherent memory fault Otherwise, the fault is passed to the virtual memory fault handler



'i h- Cmnap entry cn.T-.,- :hc index of an entry in the Cpage table. The fault handler tests th,
bit mask in the Cpag, tc, discover whether a local physical page is backing it. Since Cpages nm ,
shared by multiple address spa--, a local physical copy may already exist. If a local copy exists.
the handler applies a hash function to the index of the Cpage and scans the inverted page table
to find the physical page. The inverted page table is used rather than the list of physical pages
in the Cpage's directory because the former is guaranteed to use strictly local memory accesses.
thus decreasing both latency and potential contention. Even when contention is not a problem it
is cheaper to scan over a few collisions in the inverted page table than to search the list of physical
pages with remote memory accesses.

If there is no local physical copy and the fault is a read miss, the fault handler consults tLu
replication policy module to determine whether or not it should replicate the Cpage. If the Cpag-
is to be replicated, the handler uses the inverted page table to find a free physical page. It then
allocates the physical page by entering the address of the Cpage entry in the inverted page table
entry for the physical page. If the existing state of the Cpage is modified, the handler uses the
address space coherency mechanism to restrict all virtual-to-physical translations for the Cpage to
read-only access. The handler then performs a block transfer from another physical copy, and add-
the physical page to the directory.

If tiie policy indicates that the Cpage should be fro:zn rather than replicated, there can oid I,.
on, physical page backing the Cpage. Furthermore, the Cpage must be in a modified stat, Th,
handier sinply maps the remote physical page for the access access rights allowed by the 'irt ual
memory system.

Similar sequences of actions occur on a write miss. For example. if the state of t.he Cpag,- is
present+. the handler first uses the address space coherency mechanism to invalidate all virtual-to-
physical translations for the remote physical copies, and then frees all of these pages. The handl, r
concludes by mapping the chosen physical copy of the Cpage with the necessary access rights.

5.3 Implementing Address Space Coherency

When an address space is modified by the addition of new mappings or by relaxing the prot(,ct1i.z
on a range of virtual addresses, it is easy to distribute the changes. Any processor attempting
to use its expanded privilege will cause a bus error and thus be able to discover and react to
the change. On the other hand, when an address space is restricted by removing mappings or
increasing protection. some additional mechanism is necessary to ensure consistency. For examil,.
consider a UMA multiprocessor with a single shared page table per address space. Since page tall,.
entries are cached in the address translation cache (ATC) of each processor's hardware menrN
management unit. these cached copies must be invalidated whenever the corresponding page tabl,!.
entry is invalidated or restricted. Because address translation caches are usually private to th
processor to which the MMU is attached, multiprocessor operating systems such as Mach implement
this part of the address space coherency protocol with a software shootdown mechanism [8]. The
PLATINUM address space coherency mechanism is very different from that used in Mach. The
differences arise largely because the PLATINUM mechanism was designed specifically for NUMA
multiprocessc rs.

Because code and data are replicated in PLATINUM, each processor needs to have its own private
set of virtual-to-physical mappings for each address space. While Mach uses a single shared page
table (Pmap) per address space. each processor in PLATINUM must have its own private Pmrap
per address space, Since a Pmap is only a cache of the valid virtual-to-physical translations, it
need not contain mappings for everything in an address space. rather only a working set for that
processor. Thus. in contrast with a scheme examined by Holliday [19], scaleability is not restricted
by replication of page tables.
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In addit-i,. to r-Aucing latency and contention. using a local, private Pmap for each processor
allows the construction of a fast address coherency mechanism. Black ef al. discuss two prol ns
that result frorri multiple processors sharing a single Pmap in Mach. If the processor initiating th,.
addresS spa-e change instructs a target processor to flush its ATC before updating the Pinap. tile
target proce.,,.or may reload an inconsistent entry. If, on the other hand, the initiating processor
upd;ates the Pmap before instructing the target processor to flush its ATC. the target processor may
write back its ATC entry to update the reference or modify bits, thereby creating an inconsistent
Prna. Their solution to these problems is to stall the target processors while the initiator changes
the Pmap. Since PLATINUM uses a Pmap per processor, it does not face either of these problems.

A consequence of the replication of mapping information is that the Pmaps must be kept coherent
as well as the ATc's. Address space coherency and data coherency are thus unified by a sing!e
mechanism that maintains a consistent set of virtual to physical mappings for each coherent page.
Part of the protocol is performed by the processor initiating the address space change and part
is performed by the processors sharing the address space with the initiator. They communicate
through the Cmap message queues and through interprocessor interrupts.

Tilt initiating processor posts a short message describing the change to the Crmap messag- queue
of each address spac- affected by it. A change to a specific address space affects only that space, but
a change of mappings caused by executing the data coherency protocol must affect every addres,
spacr in w hi.-h the Cpage is mapped. Part of each message is the bit mask specifying the set of taraet
prc-essors that eventually have to apply the change to their Pmap for this address space. This s-t

is cxactly the set of processors appearing in the reference mask of the Cmap entry for this Cpag-
Th, set of target processors is thus restricted to those that arc actually using a mapping for tlh5.
Cpao Furthermore. a processor needs to be interrupted to perform the change only if the address
space is currently active. The remainder of the target processors will update their Pmaps when they
activate th- address space. In contrast, the Mach TLB shootdown mechanism must interrupt each
processor with the address space activated, even if that processor has never referenced the page.

On the target processors the updating is executed by a Cmap synchronization handler that is
called either from an interprocessor interrupt or as part of the activation of an address space. Thef
handler scans the queue of change messages. If the processor appears in the target mask of a message.
i, applie, the change to its Pmap and removes itself from the target mask. The last target processor
to see a message removes it from the list.

The memory management system obtains a significant reduction of overhead by deactivating the
kern.l address space when a processor begins running in user mode. This reduces the number of
inter-processor interrupts each processor receives. When a processor reenters the kernel to service a
trap or interrupt, it has to reactivate the kernel address space before it can access coherent memory.
Fturthir ,rc, k,-rnel zode that runs at the interprocessor interrupt level or higher is not allowed to
access coherent mr.iory.

6 Performance Measurements and Analysis

All of the performance measurements were gathered on a 16-processor BBN Butterfly Plus Multi-
processor. A processing node on this machine consists of a 16.67MHz MC68020 with a MC68851
MMU and 4 MBytes of physical memory,

6.1 Basic Operation Performance

The current page size is 4K bytes. The copying of data in a PLATINUM page migration operation
is a kernel-initiated, page-aligned block transfer of a known size. This can be done in 1.11 ms,
somewhat faster than can be achieved with the more general block transfer made available to users
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The total time to execute the protocol for a read miss that replicates a non-modified page
ranges from 1.34 ms to 1 .38 is. The shorter time corresponds to the case in which thi relevant
kernel data structures are local, while the longer time corresponds to all remote accesses. Of this
time, data copying accounts for 1.11 ms and the fixed overhead of allocating and mapping a physical
page accounts for the remaining 0.23 ms to 0.27 nis.

The total time for a read miss that replicates a modified page ranges from 1.38 ms to 1.59 ms.
if only one processor has to be interrupted to restrict its mapping to read-only access. The fixed
overhead in this case ranges from 0.27 ms to 0.48 ms. The additional cost compared to a read miss
on a non-modified is due to the address space coherency protocol.

The total time for a write miss on a present+ page ranges from 0.25 s to 0.45 ms in the case in
which only one processor has be interrupted to invalidate its mapping and one physical page freed.
For up to 16 processors, the incremental cost of interrupting each additional processor and freeing a
physical page is no more than 17 Ms. Freeing a physical page uses one remote memory read and and
one write, accounting for about 10 ps of this time. We therefore believe that the incremental cost
of interrupting a processor to restrict a mapping to be about 7 ps. In contrast. Black el al. report
an incremental cost of 55 ps on a 16-processor NS32332 Encore Multimax [8].

6.2 When does it pay to migrate a page?

To decide when it is appropriate to migrate a data page rather than make a remote mapping, it
is necessary to estimate the relative costs of each of these options. The following analysis is based
on the contention-free costs of remote memory access. Contention, both at the memories and in
the switch, increases latency by serializing requests. In the presence of contention the benefits of
replication can be much higher than indicated here.

Suppose a data structure, X, is shared and written by p processors: further suppose that X is
the sole occupant of a coherent page. Each processor operates on X in a critical section as follows:
obtain the lock for X. perform a computation f entailing r memory references on it, and release the,
lock. If this operation were encapsulated in a procedure call it might be performed in one of thret
ways:

" The operation might be executed on the processor requesting the operation and leave the data
where it is. The operation is an ordinary procedure call and access to the data can be an'
combination of local and remote memory references.

" The data and the process executing the operation might be co-located by moving the data
to the processor requesting the operation. The operation is an ordinary procedure call. and
access to the data uses local memory references.

" The data and the process executing the operation might be co-located by performing a remote
procedure call. Access to the data uses local memory references.

While implementations of languages such as Emerald [21] and Natasha [13) on top of PLATINUM
would utilize the third option, the analysis addresses the choice between the first two. Let Crenot,
be the cost of performing the operation using remote memory references, C1 ,oj be the cost of using
local references, and Cmsprte be the cost of moving the data. It is always cheaper to move the data
when

Cemote > g(P)Cmirate + Coical, (1)

where g(p) is a function that expresses the number of data movements necessary to save a remote
operation. It is the ratio of the total number of executions of f to the number of executions of f
performed using remote data operations when the data is not moved.
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When p processors access X in strict round-robin or&r, g(p) z p/(p - 1). For example. consider
two processors that alternate in touching X. If X is not moved, there wxill he one remote and one
local execution of f per cycle. If it is moved, there will be tw-, local executions of f and two data
movements per cycle. Thus g(2) = 2. This is the worst-case scenario for application behaxior.

Let

T be the time to perform a typical local memory refere nce on a 32-bit word. On a Butterfly Plus
this is about 320 ns.

Tr be the time to perform the corresponding remote merory reference On the Butterfly Plus this
is about 5000 ns to read a 32-bit quantity. Write operations are faster.

Tb be the time to copy a word iv a page migration operaticni. This is about 110 ns on the Butterfly
Plus

s be thCe size of a page expressed in ternis 'f the typical unit of access, on the Butterfly Plus a 32-bit
wo-'d

Define 2 = r/s. For example. if the size of X is s and f reads and writes every location in X.
= 2. On the other hand if X occupies only half the page and f writes one half of X's data, -, = 0.25.

We therefore have CocaZ = ;,sT,, and C,,,,ot, = ,sT.. The cost of migration is divided into
the cost of block transfer, sTb. plus a fixed overhead, about .48 ms in the current implementation .
Substituting these into equation 1 and rearranging the terms. we conclude that it always pays to
migrate when

107g(p) 
(2)-. 24g(p)

Not- that the constant iv the wimerator is proportional to the fixed overhead of the migration
oper,,tion and that the coefficient of g(p) in the denominator is the ratio Tb/(T, - T). From this we
make the following observations:

For determining when migration is economical, the ratio Tb/(T, - T) of block transfer time
to the time that can be saved by using local rather than remote memory access operations
is the single most important characteristic of the architecture. it puts a lower bound on the
minimum access ratio It for which migration makes sense for any block size. This in turn
bounds the minimum useable page size. The existence of a fast block transfer mechanism Zs
;)ttal to thle success of any program that performs migration and replication!

" For each ), the need to amortize the fixed overhead of the coherence protocol puts a lower
bound on the page size that can be used economically. For a fixed y, a decrease in overhead
resqults in a proportional decrease in the minimum page size for which migration makes sense.

" As the number of processors sharing X increases, g(p) tends towards 1, thus making migration
more attractive

These factors all determine the granularity of data access that must be seen in the application
to ensure that migration is always the correct action for a given page size. Some values for equation
2 are presented in Table 1. For the current page size of 4K bytes, or 1K words, -r must be greater
than 0.34g(p) for migration to be attractive if the reduction of latency in the absence of contention
is the evaluation criterion.

This analysis emphasizes the importance of coarse data granularity for attaining good perfor-
mance on a NUMA machine. A larger page size over which to amortize the fixed overhead allows us
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S,,,n, minimum page size
g(p) = I _g(p) 

= 2

.24 never never

.35 973 words never

.48 435 never

.60 298 1784

.75 210 793

1.0 141 412

1.5 84 210
2.0 61 141

Table 1: Equation 2 evaluated at some interesting points. It always pays to migrate data when the

page size is greater than San.

to tolerate a slightly smaller -. For a fixed granularity of data access that is smaller than the size
of a page. however, ? is inversely proportional to page size and therefore decreases too rapidly to
take advantage of this effect. On the other hand, if a program has a granularity of data access that

is greater than the size of a page, -r remains more or less constant as pages grow. IncrtwLng page

size in this case allows more effective amortization of the overhead.

6.3 Application Performance

The preliminary performance measurements were done on three application programs running on
PLATINUM. Each of these programs has a memory access pattern distinct from the others. In
addition to timing data, the kernel reports summary statistics pertaining to memory management.

For each Cpage this includes the number of coherent memory faults, a measure of contention in the
Cpage fault handler for that page. and whether the Cpage was frozen by the replication policy.

Gaussian Elimination

The first application we examined was the simulation of Gaussian elimination described in the
introduction. This particular computation was chosen because it had been studied previously on an

earlier version of the Butterfly for a variety of programming systems and styles [22: 23]. LeBlanc
compared the performance of an implementation on the Uniform System from BBN [6] with Gaussian
elimination implemented on SMP [24], a message passing library developed at the University of

Rochester.

The PLATINUM version is most similar to a coarse-grain implementation on the Uniform System
found to be the most efficient in LeBlanc's study. The Uniform System provides the user with
lightweight threads of control and a globally-shared memory. Data in the globally-shared memoryv
is scattered throughout the machine to reduce contention. To exploit the relative speed of local
memory, user code typically copies shared data into private local memory using block transfer.

accesses it tnere, and, if the data is modified, copies the new value back to the globally accessible
location. Like the Uniform System implementation, the PLATINUM implementation uses a single

tnread running in a shared address space on each processor. We used the same 800x800 matrix.

The differences between the two versions of the Butterfly reduce the utility of quantitative com-
parisons of performance measures. Nevertheless, such measures provide a framework for qualitative
comparison. The program running on PLATINUM yields a speedup of 13.5 versus 10.6 for the Uni-

form System program [22]. In contrast, the SMP message-passing implementation yielded a speedup
of 15.3.
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The PLATINUM program is much shorter and simpler than the SMP implementation, which.
in turn. is much shorter and simpler than the Uniform System implementation. The transparen
caching performe, . by the coherent memory system eliminates the need for the programmer to
explicitly manage the location of data structures. A crucial performance advantage of the PLATINUM
implementation over the Uniform System program is that rows of the matrix do not have to be copied
back to the globally-shared memory to make them accessible to other threads of the program.

An examination of the post-mortem statistics gathered by the kernel shows that the PLATINUM
implementation exhibits high contention in the Cpage fault handler for certain Cpages. This is at-
tributable to the replication of the data backing a Cpage when it contains the pivot row. As expected.
the memory manager froze the Cpage containing an array of event counts used for synchronization.

Merge Sort

Another program used for measurements is a parallel merge sort that uses a tree of merge operations,
each of which is performed by a single thread. We chose this program because it had been studied
on a Sequent Symmetry Multiprocessor (3]. The Sequent Symmetry is a UMA multiprocessor. The
one used in the study had model A processors with 8Kbyte write-through caches.

Figure 3 shows the measured speedup curves for this program. The program shows better
speedup running on the Butterfly Plus under PLATINUM than on the Sequent Symmetry for the
same size problem on the same number of processors. We believe this is due to the small cache
size and write-through policy on the Sequent. During each merge phase one half of the data to
be merged will already be in the merging processor's local memory. Furthermore, with the linear
access pattern of merging, the processor will touch all of the data prefetched by each coherent page
fault. The problem is large enough, however, that none of the data will remain in the Sequent cache
between merge phases.
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Connectionist Simulator

The third application is a simulator used by neural network researchers at the University of Rochester
studying recurrent backpropagation networks [31]. Unlike the others, this program was developed
by someone with no previous experience programming the Butterfly Plus. While the other programs
were written to exploit coarse-grain parallelism on large amounts of data, the simulator operates on
much less data and at a finer granularity. The backpropagation algorithm [28] works by propagating
signals from an input to an output vector through successive layers of units. When the signals reach
the output layer, they are compared with a target output and error signals are propagated backward
to the input through each of the layers. These error signals are used to modify the strength of the
connections between units so that the network eventually learns how to get the correct output for
each of the inputs. An interesting approximation of the backpropagation algorithm is obtained by
running the algorithm on a parallel machine without synchronizing the computation into rounds.

We measured the performance of a simulation of a network learning a classic encoder problem
[28]. There are three layers (16-8-16) of units and 16 pairs of inputs and outputs. Each unit reads
from each of the units in the previous layer a vector of 16 activations (corresponding to each of the
patterns) and from each unit of the next layer a vector of 16 error signals. After multiplying the
activations and error signals by the correct weight, the unit computes and updates its own activation
and error signal. The task is terminated when the total error (difference between the targets and
the computed outputs) falls below a fixed threshold. The non-determinism produced by the lack of
synchronization introduces negligible variability of execution time.

The simulator is parallelized by simple for-loop parallelization on units. Each processor is given
responsibility for a random subset of the units. It continuously simulates these units accessing
the activation and error vectors from the adjacent layer units. Figure 4 plots the speedup for the
simulator.
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7 Replication Control Policy

While h,? replication and migration of data can have significant benefit in many cases, the overhead
of trying to mainta.i coherency in the presence of fine-grain write-sharing could be prohibitively
expensive. In such circumstances it is less expensive to use remote memory access than to try to
migrate or replicate the data. Since the choice between data movement and remote access depends
upon the relative costs of the alternatives, we have delayed discussing the replication control policy
until after presenting the details of the mechanism and of its performance. We describe the interim
policy -urre-..tlv in use in PLATINUM. We are also experimenting with alternative replication control
policie-

Since invalidations occur as a result of interprocessor interference, all policies use a recorded
history of recent invalidations to estimate the interference for each coherent page. The current
version uses a minimal history con, isting of a timestamp for the most recent invalidation by the
coherency protocol of a mapping for that coherent page. On a bus error handled by coherent
,nemory, a coherent page is replicated or migrated if the the last invalidation by the protocol was at
least t, in the past. If it was invalidated within t1, the coherent page is frozen rather than replicated.
Since invalidations cause the Cpage to go into the modified state and since it could not have been
replicatvt since then. there can only be one physical page backing a Cpage that is frozen. That
phvsi,_al age is mapped for remote access. We tried two policies for dealing with subsequent faults
occurring af:r the tI ms period expires. The default policy is to continue to create remote mappings
f,r the Cpage until the page is explicitly thawed. The alternative is to allow the frozen coherent
page to be replicated and thus thawed as a consequence of an attempted access. The programs we
have examined thus fa, exhibit no significant difference in performance between these policies.

B.ot .-)T, the speed of ihe Butterfly processor and the need to amortize the replication of a
,Th-'r,.- pag.. -',ver a reasonal If, number of accesses, t, is currently set t.o 10 ms. A few tests

indicated tha;. opplication periorrnance is insensitive to varying t, from 10 ms up to about 100
ins. Once th :Illection of application programs has grown to a reasonable size we will perform
syst 'nat}, exjpriments on the effects of varying this and other parameters.

Once all th,: threads that will touch a page have mappings to a frozen page. further access to
that c,,herei0 p tge cause neither additional bus errors or nor the associated overhead. Since the
cohierricy orotocol as described thus far is driven strictly by bus errors, the page could remain frozen
permanentlh. While it may be appropriate to freeze a page at a particular point in the execution
of a program, a change in the access pattern of that page may make it desirable to thaw it in the
future. PLATINUM therefore has a simple mechanism for thawing pages, thus allowing the memory
manager to react to phase changes as well to thaw any incorrectly frozen pages.

Fhe Cpage module maintains a list of frozen Cpages and a clock interrupt every t2 seconds
activates the defrost daemon to invalidate all mappings to the frozen pages. Subsequent access
attempts will cause faults that may replicate or migrate a recently thawed coherent page. To keep
the overhead low 12 is currently set to 1 second. Reducing t2 may allow coherent pages accidentally
frozen to be replicated sooner, but it just adds overhead for coherent pages that should remain
frozen.

An alternative implementation is to maintain the list of frozen pages as a priority queue ordered
by thaw time. This allows the daemon to run more often than every t2 seconds. It also would allow 12

to be set adaptively on a per-page basis. Although there is evidence (see below) that thawing frozen
pages is important for performance, we do not yet have reason to believe that a more sophisticated
policy for thawing will have much effect. Since a more sophisticated policy would add overhead to
the system, we plan to continue to use the simple policy described above until the problem is better
understood.

A possible reason for the access pattern for a page to change is that two or more variables
with different access patterns are in that page. For example, co-locating a synchronization variable

16



such as a lock or event count with a read-only variable on one page can lead to problems becaus
they demand very different treatments from the memory manager. Active use of synchronization
variable:. will cause their pages to be frozen while a read-only variable should be replirable. Tho-
preferred solution to this problem is for the programmer, the compiler, and the run-time library
for the language to be intelligent about the allocation of variables to virtual pages. Even if this
allocation is not done well, however, it is still possible to improve performance in cases in which the
variables are each used frequently only in different phases of the program.

Experiences with our first version of the Gaussian elimination program provide anecdotal evidence
of the importance of intelligent memory allocation, thawing, and performance instrumentation. A
variable whose value is the matrix size is written during a startup phase and is read-only for the rest of
the execution. It is vital that each processor have a local copy of the matrix size since it is used in the
termination test of the inner loop of the algorithm. Since we expected this variable to be replicated,
the slave threads do not make private copies of this variable. A synchronization-flag variable was
added later to facilitate interpreting execution times. It is used for barrier synchronization at the
start of the elimination phase of the program and is not touched thereafter. Each slave thread spins
waiting for the flag to be written by the master thread. This behavior freezes the Cpage. which also
contains the matrix-size variable. This program was first run on a partially functional version of
PLATINUM that did not yet have thawing intalled. In going from one processor to two the execution
time rncreased because one thread had to access the matrix-size variable remotely in its inner loop.
With four processors the execution time was less than with one processor. but with five or more
processors the shared variable becomes a bottleneck and execution time rises slowly with number of
processors.

Given the kernel's report on the behavior of the coherent memory system it was a simple matter
to diagnose the problem and program around it using the simple expedient of having each thread
keep a private matrix-size variable. Once thawing was installed, the old version of the program
tooks less than two seconds more to run than the new version. The overhead of runnirg the defrost
daemon adds no measurable overhead to the new version of the program.

8 Experiences Programming on a Coherent Memory

In our experience, it is much easier to write applications to run on coherent memory than to run
on non-uniform physical memory. PLATINUM programs are smaller than both Uniform System
programs and programs using message-passing styles because it is not necessary to generate code
either for explicit communication, or for explicit management of memory locality. The PLATINUM
programmer can concentrate more effort on the problem the application is intended to address.

Despite the apparent familiarity of PLATINUM's abstract machine model, a programmer still
needs to understand and apply certain fundamental facts about parallel programming on a NUMA
machine It is of overwhelming importance to avoid programming styles entailing fine-grain write-
sha-ing. Whether memory is being managed automatically by the coherent memory manager or
explicitly by the programmer, this fine-grain write-sharing introduces both latency that reduces the
effective processor speed and memory contention that serializes logically parallel computations. Any
parallelism at the processors is constrained by serialization at the memories. It is vital that most
of the sharing of writeable data be done at coarse enough spatial and temporal granularities that a
fast block transfer mechanism can be used effectively.

In order to allow the coherent memory manager a chance to effectively manage data locality, the
programmer or compiler must be cognizant of the sharing properties of data. Data with different
access patterns should not be co-located on a single page. The private data of each thread should
be separated from private data of other threads and from shared data. Read-only data should be
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kept separate from modifiable data. Coarse-grain modifiabl , data should be separated from fine-
grain modifiable data. A run-time library for defining disjoint memory allocation zones and for
specifying page-aligned allocation helps PLATINUM programmers to do this with a minimum of
effort, even without compiler support. Because a typical NUMA multiprocessor has a very large
physical memory, the internal fragmentation introduced by this strategy has little impact and is
vastly preferable to interprocessor interference.

9 Architectural Considerations

The benefits of replication cannot be measured solely in terms of the ratio of local to remote memory
access times. As the degree of parallelism increases on a machine with a large number of processors,
contention for memory modules and th( interconnection network become the dominant factors de-
termining performance. The most important impact of coherent memory is that it effectively uses
local memories as caches to reduce contention.

An effective block transfer mechanism is critical to an efficient implementation of coherent mem-
orv. It should be both fast and asynchronous with respect to program execution. The analysis in
Section 6.2 quantifies the importance of block transfer speed in one scenario. Although the But-
terflv Plus has a fast. asynchronous block transfer mechanism, it consumes 75/ of the available
local memory bus bandwidth on both nodes involved in the transfer. Both processors are memory-
starved during a block transfer. Redesigning the memory system to allow more concurrency between
processing and block transfers would help to reduce further the effects of memory contention.

Although the Butterfly Plus does not have local data caches in the processor nodes, the PLAT-
INUM coherent memory mechanism is compatible with a generation of NUMA multiprocessors with
caches but without a hardware coherency protocol. Since all mappings are guaranteed to be private
and local except for frozen pages, almost all data is cacheable. Replicating a modified page would.
however, require flushing a write-back cache and thus slow the invalidation operation. Such local
caches could be relatively cheap because they need not incorporate a hardware cache coherency
protocol. In addition t- reducing latency on local memory operations, local caches would reduce
contention for the local memory module between the local processor and remote memory operations.

10 Related Work

The management of NUMA memory is a topic of considerable current interest. Recent studies of
methods for managing the location of data in a NUMA machine include the analysis and simulation
of competitively optimal NUMA memory management by Black ei al. [7], Scheurich and DuBois'
simulation of data migration in mesh-connected NUMA machines [29], and Holliday's simulation of
data migration on a Butterfly [20]. The design of the Psyche memory manager (25] contains a layer
that deals with NUMA data location issues. Bolosky has implemented NUMA memory management
for Mach on the IBM ACE Multiprocessor Workstation [9].

While one effect of replication and migration in the PLATINUM coherent memory system is the
reduction of latency, we contend that for large hardware configurations a far more important benefit
is the reduction of memory and switch contention. Therefore, we have have not expended much
effort attempting to design a mechanism for the optimal placement of frozen pages, those that are
being actively modified at a fine granularity by multiple processors. While careful placement and
migration can reduce average access latency in the absence of contention, there is no demonstrated
reduction in contention. Since the proposed placement mechanisms are not cheap, entailing hardware
reference counts [7; 29] or simulations of reference counting in software [20; 25], we believe that it
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is better to have a simple, low-overhead placement policy and to devote more resources to reducing
contention by reducing the amount of fine-grain write-sharing.

11 Status and Future Directions

Our experiences thus far indicate that the PLATINUM memo,-y management system will achieve its
goals. Foremost, the memory management system makes it easier to program a NUMA architecture
without an unacceptable sacrifice in performance. Although initial programming experiments used

the kernel interface directly without too much programmer effort, we are rapidly accumulating
run-time libraries, shells, and other support software to further ease the programming proce-,s.
An important part of this will be the installation of instrumentation for performance monitoring.
analysis, and visualization [17]. The feedback from such instrumentation is useful to both application
programmers and implementors of compilers for NUMA machines.

We are continuing to study the behavior of the coherent memory' system under a variety of
applications. Once the collection of applications has grown to a reasonable size we will begin a sr ri,-
of experiments systematically varying the implementation by changing parameters such as page s1z,-

and replication control policy.

The kernel itself is designed to scale well to machines with a much larger number of processors
Its decentralized design keeps the number of remote memory accesses in the kernel to a minimum
We are particularly pleased with the success of the decentralized and concurrent implementation of
the coherency protocol. especially the low incremental cost per shootdown and the techniques for

reducing the number of processors involved in a shootdown.

Although providing coherent memory transparently in the operating system has proven itself
useful. it is not hard to construct scenarios in which better performance could be obtained if tli,
memory manager had access to somE hints and directives from the application program. The ker-
nel interface will bc extended to support these. While such information could be provided by the
programmer directly, this additional burden runs contrary to the goal of providing a simple pr,,-
gramming environment. We therefore anticipate that a programming language and its run-tim,
support will utilize these hooks. The Natasha programming language for such experiments 1.:
13]. The Natasha compiler is near completion and will generate code which can be executed on
PLATINUM.

In its current incarnation, PLATINUM is a limited experimental platform for experimenting with
the implementation of coherent memory. We will extend it as necessary to serve this purpose. On
the other hand, dealing with issues such as file systems and protection are not in our plans. When
and if it becomes appropriate to make coherent memory available in a general purpose operating
system, we anticipate reintegrating those parts of PLATINUM withl Mach.
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